

Nov 14, 2018 Q4 IADC DEC Technology Forum Houston, TX

Real-Time Health Monitoring of Top Drives Using Physics Based Models and New Sensor Technology

Pradeep Ashok

THE UNIVERSITY OF TEXAS AT AUSTIN

Introduction

Top drive is a very important piece of equipment on a rig

Consequences of a top drive failure:

- All drilling efforts come to a halt
- Downtime to the operations
 - Rig rate must still be paid
- High repair costs
 - Availability of parts
 - Transportation of technician

Customer Survey

Relative Desire for Top Drive Features

Additional Feature to add into the Top Drive System

When you call for service on your top drive, how long is it until you are back up and running?

Different Problems on a Top Drive

Top Drive Subsystem

Asset Management Strategy

- Condition-based Maintenance vs. the traditional time-based preventative maintenance
- Real-time analysis to determine whether timebased preventative maintenance required

Thermal Modeling + Vibrations Monitoring + Oil Monitoring

Top Drive Thermal Monitoring

- Leverages temperature sensors already installed on most top drives :
 - Motor winding temperature sensors
 - Gearbox oil temperature sensors
- Estimation of model parameters from real-time temperature measurements
- Determine whether estimated parameters are "healthy".

Physics Based Models

Induction Motor Thermal Model

Gearbox – Oil Sump Thermal Model

Results- Motor Faults

Results-Oil Degradation

Performance Based Maintenance

Top Drive Vibration Monitoring

- As a component or piece of a machine begins to fail, the vibrations emitted by that machine deviate from normal response.
- Various statistical measures to identify abnormal vibrations: RMS, crest factor, kurtosis factor
- Useful for bearing failures and gear failures

Number	Sensor Purpose	Sensitivity	Monitoring Time
1	High Shock	10 or 50 mV/g	Continuous
	Measurement		
2	Thrust Bearing	100mV/g	Periodic
3	Gears (Bull and	100mV/g	Periodic
	Pinion)		
4	Gears (Bull and	100mV/g	Periodic
	Pinion)		

Top Drive Oil Monitoring

Goal is to:

- Optimize and extend oil drain intervals
- Forego catastrophic failures
- Reduce or eliminate unexpected downtime
- Extend the operating life of machinery Sensors to use:
- Oil Quality Sensors
- Particle Count Sensors
- Wear Debris Sensors
- Fluid Properties Sensors
- Moisture and Humidity Sensors

Viscosity, Temperature, Dielectric Constant, Density and Conductance

Is There a Business Case for CBM ?

Average day rate for onshore drilling in the US \rightarrow \$120,000 per day

Nominal downtime due to top drive failure \rightarrow 12 to 24 hours to get rig back up to running

- Cost of a single downtime \$60,000 \$120,000
- Does not account for cost of replacement part / service professional

A top drive manufacturer outsourcing CBM to a third party

- Hardware fees in excess of \$50,000
- Periodic system maintenance cost

In house development of CBM system

- Less than \$15,000 for vibration, thermal, and oil sensors
- Engineering cost

Cost can be recouped with one or two failure detections

Conclusions

- A detailed thermal model of the top drive system is developed to track system parameters to infer information about the health of various top drive components.
- Various available vibration sensors are discussed, and appropriate analysis tools are presented that allow the vibration analysis of top drives
- Off-the-shelf oil monitoring sensors are explored, and appropriate ones are selected for a preliminary oil monitoring analysis.
- With some ingenuity, everyone in the food chain can make money while creating real value.

Future Work

- Extensive testing of the thermal fault detection algorithm in the field to assess its ability in detecting various real system faults
- Testing and pattern analysis of the vibration sensor measurements, to identify the patterns that correspond to specific component faults.
- Development of an oil monitoring algorithm that will best suit the selected sensors and the most dominant oil degradation mechanisms.

Nov 14, 2018 Q4 IADC DEC Technology Forum Houston, TX

Questions?

THE UNIVERSITY OF TEXAS AT AUSTIN