

Enhanced Choke Valve Control with Integrated Automation Technologies

ServoChoke®

Agenda

- Meeting the challenges for MPD
- Comparing Available Technologies
- Design & Performance attributes
- Adding Value in MPD
- ServoChoke beyond MPD
- Industry Adoption
- Why Tolomatic
- Conclusions & considerations

ServoChoke

Confidential

Designed to Meet Challenging Pressure Control Requirements

High Reliability No Maintenance & designed for long service life, reduces down time (NPT), No limitation on duty cycle

Rugged Integrated Design w/ Roller Screws

Superior Positioning Low backlash, inline design, precise positioning

High System Rigidity

Speed – Open/Close, Adjustments Quickly compensate for pressure changes, reduced settle time improves pressure control

Servo Controlled

Comparing Available Technologies

- Comparison between commonly deployed MPD Choke Operators
- MPD requirements vary from operator to operator
- This chart has some of what would be minimum performance aspects for MPD equipment

MPD Needs

Tight pressure control Continuos operation High reliability Minimal to no maintenance Long service life Durable Safe Price

Excellent

Very Good

🔵 Good

🔵 Fair

Not Applicable

Hydraulic	Fully Integrated	Jack Screw
0	•	-
\bigcirc	•	-
-	0	-
0	-	0
$\overline{}$	•	•
-	-	-
•	•	0
•	$\overline{\mathbf{\Theta}}$	-

Available Technologies

Fabricated Actuator

- Mechanics are not ideally suited for applications above 40% duty cycle
- Unpredictable service life
- Full open to full close times typically longer than 7 seconds (2" travel)
- Typically will use same or similar drive components from hydraulically actuated valves
- Allows use of brushless motor technology
- Motors may be subject to discontinuation
 - 2 commonly used motors have been discontinued or slated for discontinuation in the last 24 months
- Can be globally certified
 - Selection of manufacturers with ATEX, IECEx, and C1D1 on a single motor assembly is limited
 - May require stocking two separate part numbers
- Full range of operating temperatures available with the motor and mechanics
- Components separately sourced or manufactured
- Additional assembly and set-up when installing or replacing on the choke
- Repeatability is limited
 - Typically will not exceed +/- 0.002"
 - Continual maintenance will be required to maintain performance

Available Technologies

ServoChoke® SVC

- No mechanical adjustments needed to maintain repeatability
 - Reduced total cost of ownership
- Designed to achieve in excess of 7 million linear inches of travel at full load
 - Not limited to number of adjustments or start/stops per hour
 - Assuming an average adjustment of 3% ServoChoke (15K) would exceed 50 million adjustments at full load
- Full open to full close in less than 3.5 seconds (2" travel)
- Utilizes highly reliable automation grade components
 - Brushless servo motor
 - Roller Screws
- Rated for 100% duty cycle
- Globally certified for ATEX, IECEx, and C1D1 (US & Canada)
 - Dual assemblies will not be required based on country of operation
- Single assembly contains the motor, mechanics, and feedback
 - No need install subassemblies on the valve
- Newly available to the market ensures reliable availability of new assemblies & parts
- Single source for entire assembly ensures consistency and performance of the "System"

Globally Certified

- Fit for purpose design for all choke valve applications, including MPD
- Globally certified
 - Class I, Division 1, Groups C and D, T4
 - Class 1, Zone1, AEx db IIB T4 Gb
 - − Class 1, Zone1, Ex db IIB T4 Gb -40°C≥TAMB≤+60°C, Type 3R
 - Ex db IIB T4 Gb -40°C≥TAMB≤+60°C
 - CE Ex II 2 G Ex db IIB T4 Gb -40°C≥TAMB≤+60°C IP6X
- Rugged, all steel, fully integrated design
 - Motor, linear actuator, and feedback
 - NACE MR0175 Compliant

(UL1203/CSA C22.2) (IECEx U.S.) (IECEx Canada) (ATEX Zone 1) (IECEx Zone 1)

Performance Attributes

- Superior precision
 - Repeatable better than 0.001"
- Superior speed
 - Full open to full close in less than 3.2 sec (7K), 5.9 sec (15K)
 - Modulating moves 0.12" (6%) in less than 0.40 sec (7K) 0.61 sec (15K)
- Maintenance Free
- Continuous duty rated up to 15,000 lbf. (SVC15)
- Temp rated to -40C to +60C
- Self locking (fail in place)
- Manual override
- High efficiency

- 208-460 VAC
- 6 amp peak current draw

Comparing Similar Technologies

		SVC	Fabricated
Continuous Thrust	Lbf	15,000/7,000	Unknown
Peak Velocity	mm/sec	18.9 / 9.4	7.5 est
Programmable/Variable Speed	Yes/No	Yes	Yes
Reversting Time (Latency)	ms	5	5
Duty Cycle	%	100%	40%
Start/Stop per min		Unlimited	Unlimited
Repeatability (2" travel)	%	0.04	*0.50
Maintenance Free	Yes/No	Ves Yes	No
Real Time Data Collection	Yes/No	Yes	Yes
Certifications		🗸 ATEX, IECEX, C1D1	ATEX, C1D1
Well Control Capable	Yes/No	Yes	Yes
MPD Capable	Yes/No	Ves Yes	Yes

*Requires regular maintenance

Industrial automation components inside:

- Servo Motor
- Roller Screw
- Servo Class Gear Reduction

• Absolute multiturn encoder

NOV HXE-G3

Why were these components chosen?

- This component combination is the primary choice for the automotive industry for resistant spot welding of body frames
 - 6-9 million welds per year with no preventative maintenance to the actuator
 - Average 2-3 years of service (15-20 million welds)
- Average cost of down time is <u>\$22,000 per minute</u>
 - Some estimates indicate over <u>\$50,000 per minute</u>
- These same components are what has been integrated into the ServoChoke[®] SVC actuator
 - Ensures maximum reliability, availability, and consistency in mission critical applications
- Over 30,000 ServoWeld[®] units from Tolomatic have been deployed globally

Fully integrated, all-in-one design

Ruggedized Design

• In-house impact testing

Where does ServoChoke[®] add value

- Maximum reliability
- Designed for continuous duty
- Longest designed service life
- Zero maintenance
- Superior pressure control
- Full access to actuator performance parameters

Robust Precision Solution for the Oilfield

- ServoChoke[®] can influence overall operational expenses
 - Cost of avoiding one influx can quickly exceed \$12,000 to \$15,000
 - The same can be said with stuck pipe with savings surpassing \$1,000 to \$2,000 per incident
- Higher overall repeatability and lack of maintenance can offer savings during start-up and while drilling
 - Calibration routines take time away from drilling
 - Additional time for initial set-up and calibration contributing to NPT
 - Saving >60 min/mo can net savings of >\$5,000/mo
- Oilfield equipment is often mishandled leading to damaged components
 - One incident could cost the rig over \$12,000
 - One replacement servo motor can cost over \$4,000
 - NPT time and labor to replace this motor could exceed \$8,000

Help continue to optimize the drilling process?

- Peak reliability and availability ensure the equipment works where and when you need it
- Speed and precision can help enhance existing pressure control software
 - May enable software to calculate and execute more adjustments per minute or per second
 - Enhanced precision may help offset minor computational errors which could avoid an influx or stuck pipe
 - Some believe ServoChoke could eliminate the need to use a back pressure pump when making connections
- One actuator can be used across multiple chokes within the drilling process to reduce number of components and spares to track
 - MPD Chokes
 - Drillers Chokes
 - Choke & Kill
 - Block Style PRVs
- Better control, zero maintenance, and improved drilling operations all lead to reduced risk of NPT, damage to equipment and the safety of the rig crew

ServoChoke[®] beyond MPD Drilling Chokes

- We are seeing increased interest in other applications
 - Inquiries started in 2015
- ServoChoke[®] has also been evaluated & approved for use on:
 - 6" MPD choke systems
 - Set-point drilling chokes
 - Block style PRV

- Tolomatic has installed actuators on PRVs as part of an MPD manifold
- Common reasons driving inquiries for electric PRVs:
 - Adds ability for remote or condition based changes in pressure set point
 - Allows for "throttling" or slight bleed off of pressure rather than a conventional "pop off"
 - Can act as an additional means of controlling pressure
- ServoChoke[®] would also work on 5K & 10K C&K 1 ¹/₂" 3" orifice sizes

Industry Adoption

Tolomatic is working with the following choke manufacturers

ServoChoke[®] has been approved for use with the following MPD Drilling Software

X ABSOLUTE CONTROL

We have proven compatibility with

Tolomatic is currently working with **6** different companies land and offshore MPD systems

Why Tolomatic ServoChoke[®] for Choke Control?

- Global supplier of high performance automation grade actuators for over 60 years
- Specialists in linear mechanical motion control
- Designing fit for purpose actuators for the operation of linear choke valves
 - Choke & Kill
 - Managed Pressure Drilling
- Member of API-16C committee developing requirements for electric actuators for choke valves
- Performance tested under varying temperature and force conditions reflecting real world operating environments
- Single source for all choke valve actuators

Considerations

- Tolomatic ServoChoke[®] SVC actuators are ideally suited for continuous drilling or high performance valve operations
- Versatile for not only MPD chokes but, PRV operation, set-point, & C&K
 - Standardize on a single actuator for multiple uses
- Industrial Automation grade components with predictable service life ensure consistent and reliable performance for years with zero maintenance
- Expanding installed base, field deployments and industry acceptance
 - Currently being deployed on MPD chokes and electric PRVs
- Improved valve control allows for focus on other key components or systems that can further the increase in safety and provide additional cost reductions

Questions

