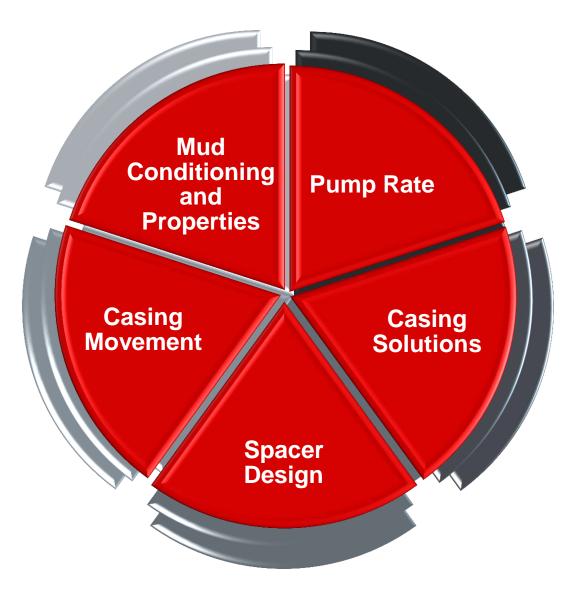


Unconventional Reservoirs

Efficiency and Execution Meet the Challenges of US Land Cementing

Agenda

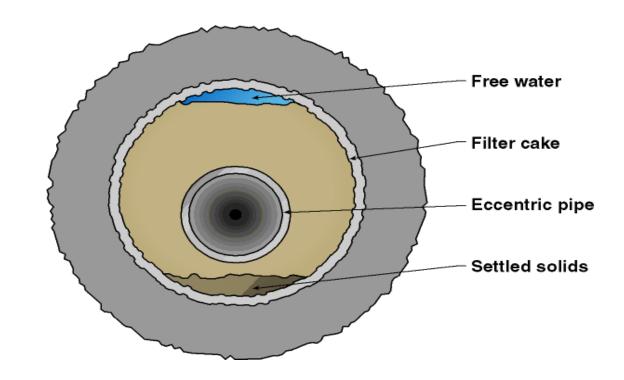
- Displacement Practices for Horizontal Cementing
- Fluid Optimization
- Fluid Solutions
- Job Execution


14UNCV-167749-MS• Challenges of Horizontal Cementing

Drilling Optimization

Delivery of highest value wellbore, in shortest time, &

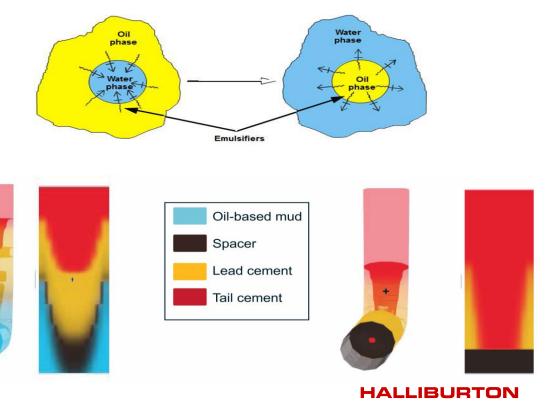
- Higher laboratory utilization
- More cement utilized / consumed
- Higher equipment, bulk plant utilization


Preparing the Wellbore to Receive Cement

Fluid Optimization

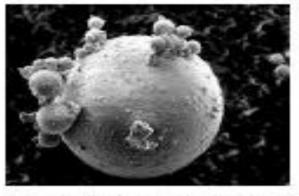
Cement Slurry Stability

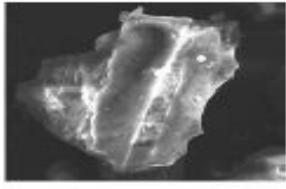
- Expose Slurry to actual job temperatures.
 - Thermal Thinning
 - Unplanned shutdowns
- Tests
 - Free Fluid
 - Fluid Loss
 - Dynamic Settling (On-Off-On TT)
 - API Sedimentation Test

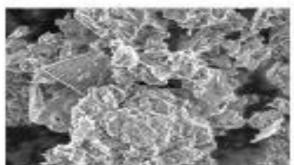

Dry Surfactant Spacer Design

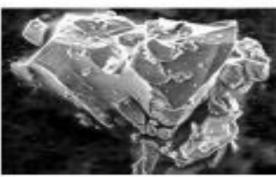
Challenge

Develop a spacer design that can be mixed on the fly to eliminate additional equipment on location, reduce time on location and reduce HSE risks


Solution


- Designed a tuned spacer design using dry surfactants that can be mixed on the fly
- Eliminated the need to pre mix spacer in a batch mixer thereby reducing our footprint on location, eliminating associated HSE risks, reducing job time, and reducing costs
- TergoVis (Scavenger) with surfactants




NeoCem™ Cement – Lighter Weight, Higher Performance

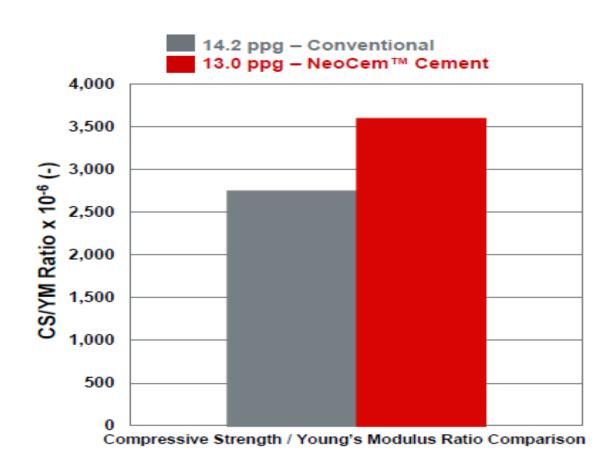
Physicochemical Synergistic Innovation

Morphology, Surface Reactivity, Compositional Chemistry

- Proprietary Blend
- Lighter Weight & Higher Performance
- Delivered Using Same Equipment,
 People and Processes

NeoCem™ Cement – Lighter Weight, Higher Performance

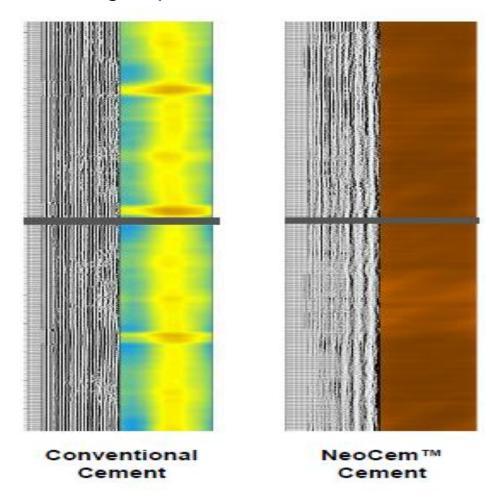
Improved Mechanical Properties


Enhanced Ductility

Lower ECDs

Improved Shear Bond

Operationally Efficient


Economical

NeoCem™ Cement – Lighter Weight, Higher Performance

- Pumped across all US Basins
- ZERO NeoCem related COPQ
- 325 Deg BHST/BHCT
- 11.0 ppg -16.0 ppg
- Variable Density
- Latex NeoCem™
- Super CBL NeoCem™
- Acid Soluble NeoCem™
- Tuned Light NeoCem™

Bond Log Improvement

Driving Efficiencies and Solving Operational Challenges

Offline Cementing - Operational Steps

Rig on initial well

- Run casing to TD
- Circulate and condition the hole
- Land casing in the wellhead / hanger system
- Prepare wellhead to skid the rig

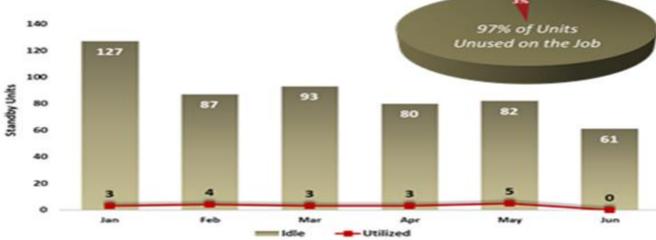
Rig moves to next well

- Configure the wellhead to accept a cement head
- Rig up of the return lines
- Rig up cementing lines from the pump to the wellhead
- Install plug container

Execution of the cement job

- Fill high pressure lines with fluid (including backside if applicable) and pressure test
- Pump spacer at a slower rate until pressure stabilizes
- Proceed with the conventional cementing

Production Job Efficiencies


Challenge

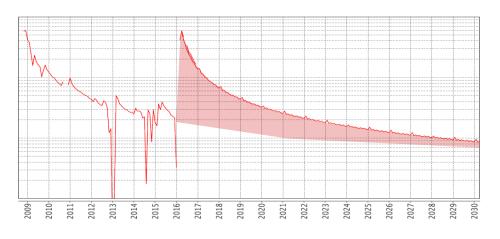
Reduce cementing costs for the operator and gain efficiencies on location

Solution

- Utilized NeoCem to simplify the job design and operations on location by pumping a single slurry
- Semi-permanently mounted standpipe to the V-door
- Eliminate the standby truck on location

Operator Requested Standby Equipment Utilization

Commander Full Bore Top Drive Cement Head


- Features and Benefits
 - Wireless remote control capable
 - Optional Lower Safety Valve
 - Optional 3rd Chamber
 - 3" Manual Ball Drop Port
- Before We Execute
 - Casing Adapter
 - » Casing Size
 - » Casing Thread Type

Casing-in-Casing Refracs

- Production
 - ~76% of original test rates
 - 2X to 4X improvement over bullhead refracs
- Operations
 - 30 50 BPM
 - Slickwater/Hybrid

Higher Costs

Longer Duration

Increased Risk Greater Production

Full Lateral Coverage

Strategic Isolation

Design Versatility

Casing in Casing Cement Designs for Refracs

- Challenges
 - HPHT Environment
 - Tight Annular Clearance
 - Fluid Loss to Existing Perforations

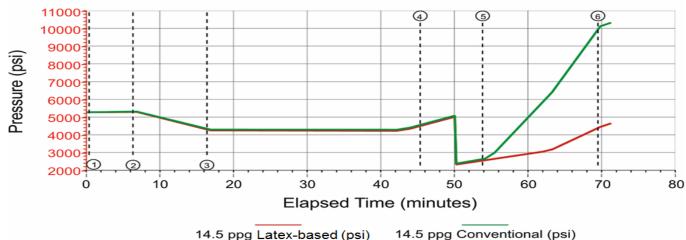
- Cement Properties
 - Tight Fluid loss control
 - Low Rheological properties
 - Thermally Stable
 - Corrosion Resistance
 - Enhanced Mechanical properties

Casing in Casing Cement Designs for Refracs

■ 14.5ppg ShaleCemTM

Tight Fluid Loss

Temp	API Stirred Fluid Loss			
300°	18 cc/ 30 min			


Compressive Strength

Temp	500 psi	24 Hr		
300°	6:16	1504 psi		

Low Rheological Properties

Temp	300	200	100	60	30	6	3
80°	46	32	20	13	8	4	2
130°	22	16	8	6	4	2	2
190°	22	16	8	6	4	2	2

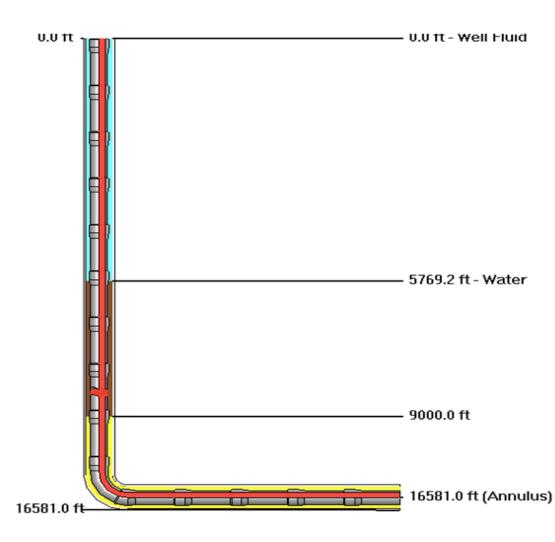
① Stage 2 [fresh water] starts pumping

② Stage 3 [shale cem] starts pumping

Stage 4 [fresh water displacement] starts pumping

Stage 3 [shale cem] enters annulus

Stage 4 [fresh water displacement] enters annulus


Cemented Casing in Casing for Refracs

Over 80 Jobs cemented since 2016

 Successful implementation in multiple assets for 12 different operators

■ 250°-360° BHCT

 Utilized several different well configurations and techniques

Conclusion - Answering the Right Questions

- ✓ Can my thread type handle the torque needed for rotation?
- ✓ Can I get my casing to bottom with the current centralizer program?
- ✓ Does the geometry of the well limit my ECD management?
- ✓ What is my stimulation method?
- ✓ Are my drilling and cementing fluids rheologically enhanced?
- √ Can my cement withstand the pressure cycling of the well?
- ✓ Are my fluids thermally stable and compatible?
- ✓ Am I using the correct plug system for wiping efficiency and fluid separation?
- ✓ Are my mud properties optimized for cementing?
- ✓ Can the pump rate be maximized for mud displacement?

Cement Solutions

