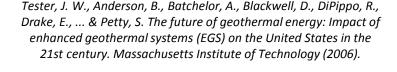


Challenges for the Drilling Industry to Unlock the Enormous Potential of Geothermal Power

November 15, 2017

GreenFire Energy Overview

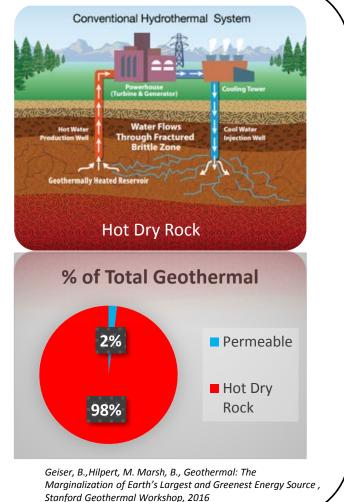
- A "demonstration stage" company
- New generation of geothermal power that uses little or no water and opens up vast, untapped geothermal resources using a closed-loop system to circulate refrigerant fluids: ECO2G[™]
- <u>Retrofit</u> ECO2G current business opportunity
 - Make failed or marginal hydrothermal wells productive ~ 1-3 MW
 - Demonstration project at Coso, California in progress with support from California Energy Commission, Shell GameChanger, a utility consortium under the Electric Power Research Institute, Blade Energy and other suppliers
- Full Scale ECO2G longer term opportunity today's topic
 - Hotter and deeper (3-7 km) into hot dry rock
 - BHTs of up to 550°C
 - Very large, profitable projects that each require drilling 100's of deep wells


Goal: Solve the drilling challenges of Full Scale ECO2G today, ...but how?

- 2. Understand the specific challenges we've identified
- 3. Some of the potential solutions that have been offered up
- 4. Discussion of solutions

can access Hot Wate Vast majority only 2% of of geothermal available

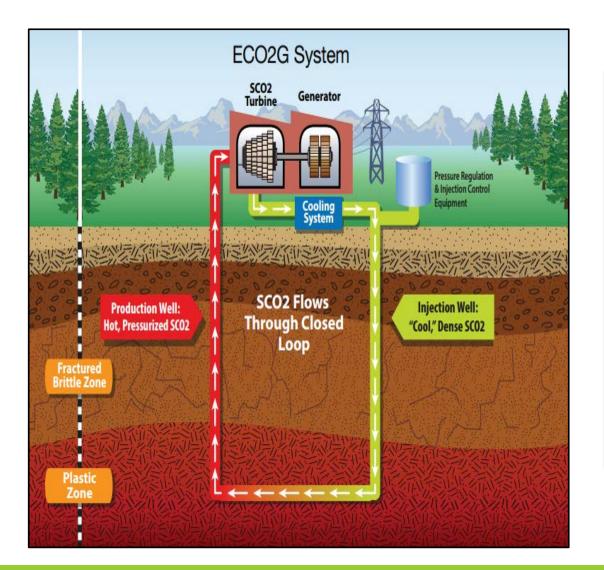
Conventional geothermal



Full Scale ECO2G Potential: Huge geothermal resource is under-utilized; conventional technology is limited to permeable rock and requires water

80,000 60,000 resources geothermal untapped resources Source USGS 40,000 Geothermal: the Marginalization of Earth's Suspected Largest and Greatest 20.000 Energy Source. Identified 2016 Peter Geiser. In Service Bruce Marsh. Markus Hilpert

US Geothermal Resource - MWe


100,000

Full Scale ECO2G: Reaching Hotter and Deeper

ECO2G Attributes:

- Closed Loop
 - Only heat is extracted
- Refrigerants (sCO₂, others)
 - Excellent thermodynamic properties with thermosiphon
- No process water required
- Deep and Hot
 - Brittle or Plastic Zone
 - Hot: 350°- 550°C

ECO2G: superior environmental attributes

ECO2G's closed-loop advantages over hydrothermal

Air & Water Quality

- Zero emissions
- Little or no water consumption
- No contact with subsurface water
- No waste streams

Public Safety

- No waste streams
- No risk of induced seismicity
- No hazardous chemicals
- No risk of fire or explosion

Land Usage

- Very small footprint
- No surface subsidence
- Minimal visual impact
- No noise pollution

Wildlife Preservation

- Not a hazard to birds, animals or fish
- Does not block or restrict migration routes

Lucrative Pacific Rim Project Analysis with Existing Drilling Technology

ASSUMPTIONS:

200 and 800 MWe Projects (over 200 and 800 wells)

Imperial Valley site characteristics

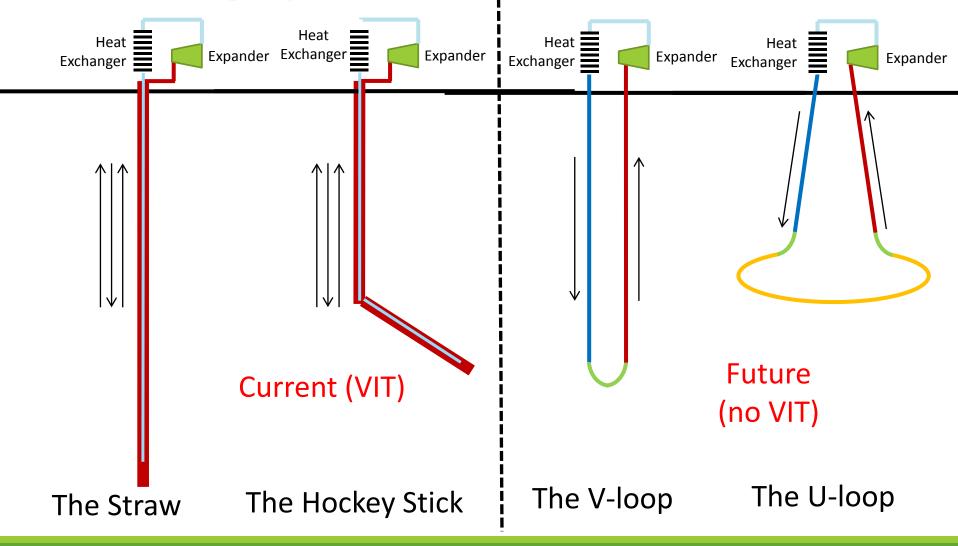
- Anchor point @ 350 C & 2600 m
- Bottom hole @ 550 C & 4250 m
- Hockey Stick Well length = 7400 m
- Straw well configuration with VIT
- Gross power = 940 kW per well
- Casing OD 9-5/8"
- 90% capacity factor

Pacific Rim

- \$125/MWh PPA
- O&M = \$4.5/MWh

Financial Assumptions

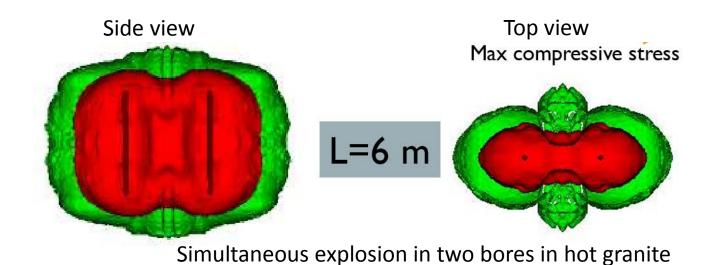
- Debt Equity Ratio = 70%:30%
- Debt Cost = 4.5%
- 25 Year Project Life


FINANCIAL RESULTS:

	200MWe	800MWe
Levelized Cost of Energy	\$60/MWh	\$59/MWh
Investment	\$1.4 B	\$5.5 B
Payback period	4 years	4 years
Net Present Value	\$0.68 B	\$2.8 B
IRR	39%	42%

ECO2G: Well Configurations

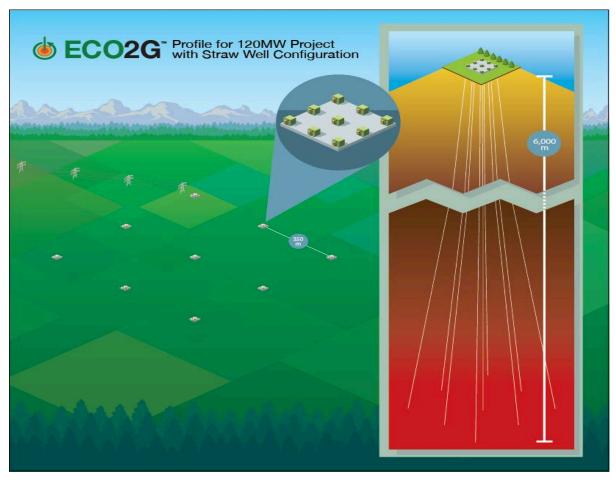
- Need for secure completion to replace expensive vacuum insulated tubing (VIT), or
- An insulated tubing cheaper than VIT



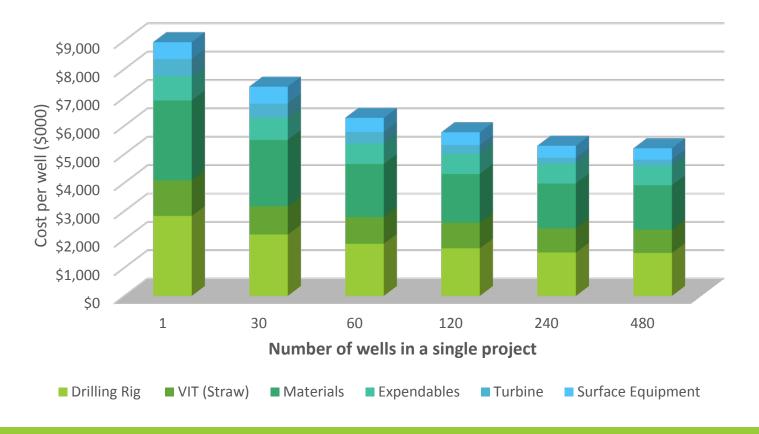
Challenges for secure completions

Completing V and U shape wells at 3-7 km depths and temperatures up to 550°C

- Range finding at high temperatures chilled circulating mud enough?
- Well joining/completion at depth with high temperature and pressure with TAML tight (Technology Advancement of MultiLaterals #'s 4, 5 or 6?)
- Hydraulic flushing to create an open hole completion, maintain flow, and seal to avoid impurities creating corrosion inside the pipe
- Open hole completions that create a sealed fracture zone to join two boreholes (Lawrence Livermore National Lab research project)
 - Energetic stimulation of completion zone feasible
 - Establishing and maintaining sufficient permeability and flow over time at high temperature



Directional drilling at high temps (



Drilling multiple "straw" or "hockey stick" wells while maintaining minimum of 100 meter spacing between wells at depth

Drilling Campaign Costs – Further Reductions Anticipated

- Surface equipment is low proportion of ECO2G total cost
- Leverage economies of scale (e.g. rigs on tracks)
- Better insulating cement near the surface and conducting cement at depth
- 350°C limit on cement jobs forcing other techniques in bottom hole?
- ROP is by far the biggest single factor

Advanced drilling technologies may cut costs and improve accuracy

Ram Accelerator: 10 X rate of penetration

- HyperSciences Spokane, Washington
- Projectiles accelerated to Mach 5 to smash rock

Plasma Flare

- GA Drilling Bratislava, Slovakia
- Electric plasma arc thermally breaks rock

Microwave Drilling: 3 X rate of penetration

- Impact Technologies Tulsa OK
- High energy millimeter waves vaporize or melt rock

High Power Laser

- Foro Energy Littleton, Colorado
- Melts through rock

- Electro Pulse Borehole: deep, large bores at 5% current cost
- Alaska Applied Sciences
- High power electric pulses fracture rock

Sonic Drilling

• Los Alamos National Laboratory, New Mexico

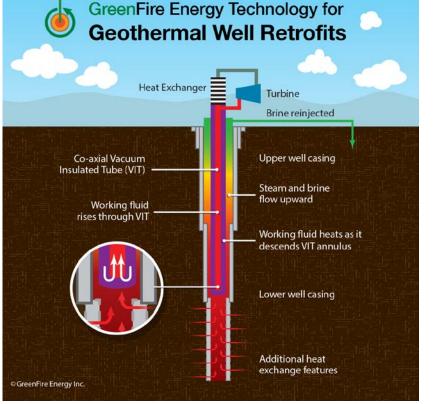
Questions & Answers

Solutions

Thank you!

Joseph Scherer 4300 Horton Street, Unit 15 Emeryville, CA 94608 Office: (888) 320-2721 www.joseph.scherer@greenfireenergy.com

(VIT) ______Steam and brine flow upward ______flow upward ______Decreased hydrothermal flow


Insufficient hydrothermal flow from inception

High brine acidity that limits hydrothermal use

Injection wells with high temperature or flow

• Flash wells releasing toxic or greenhouse gases.

Potential for ECO2G Retrofits: California Example

California wells drilled from 1980

Wells	Active	Idle	Abandoned
1698	829	115	754

Source CA DOGGR database

