DNV·GL

DNV GL Joint Industry Project: Decision Support for Dynamic Barrier Management

IADC/DEC Tech Forum "Data Acquisition & Cybersecurity"

Bill Nelson 09 March 2016

DNV GL Joint Industry Project: Decision Support for Dynamic Barrier Management

Challenge

- Knowing the continuous status of barriers and confidence that they will function when needed
- Lack of common risk language for communication
- Lack of practical decision support tools for operations

Benefits

- Continuous knowledge of barrier health status
- Real time decision support and risk management
- Common language for communication and consensus among engineering, operations, maintenance, and management

Delivery

- The JIP participants will develop and test:
 - Methods, best practices, data sources, and tools
 - Standardized bow tie diagrams, response trees, and decision protocols
- Pilot-scale decision support systems
 Ungraded

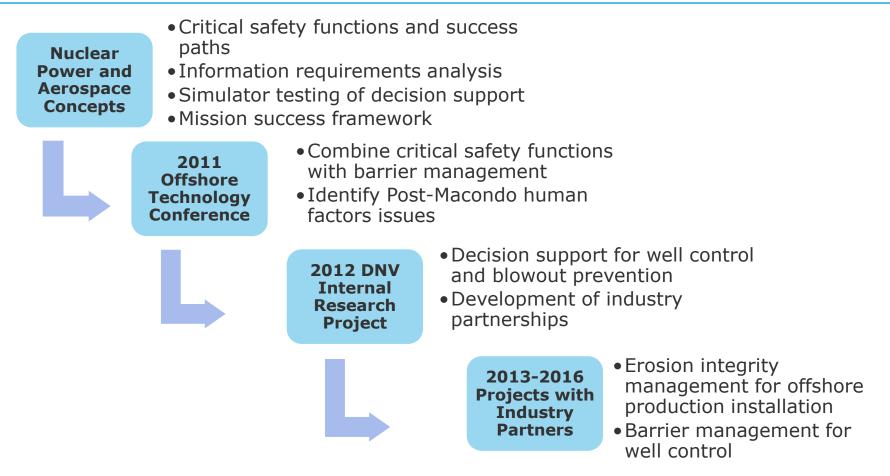
Contact: Bill.Nelson@dnvgl.com +1 832 766-0514

Region: United States

Background situation

Continued occurrence and recurrence of major accidents across many industries

- Three Mile Island
- Columbia
- Macondo
- Fukushima
- Pipeline spills
- Effective decision support is needed to continuously manage the barriers for preventing and mitigating accidents



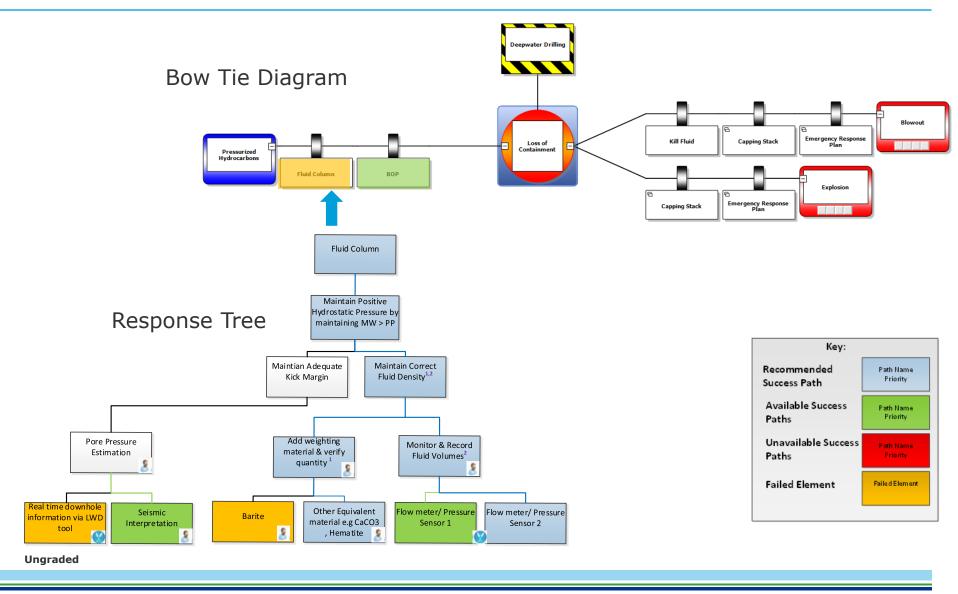
Background for the DNV GL research on decision support for dynamic barrier management

• The approach has also been applied in other projects for offshore operators, pipeline companies and a major nuclear utility.

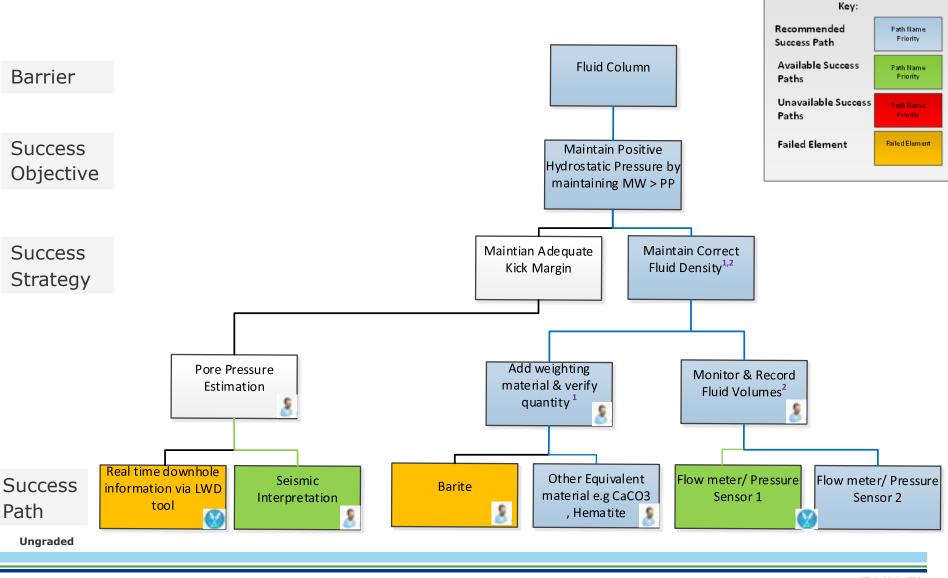
Insights for managing risks of offshore operations

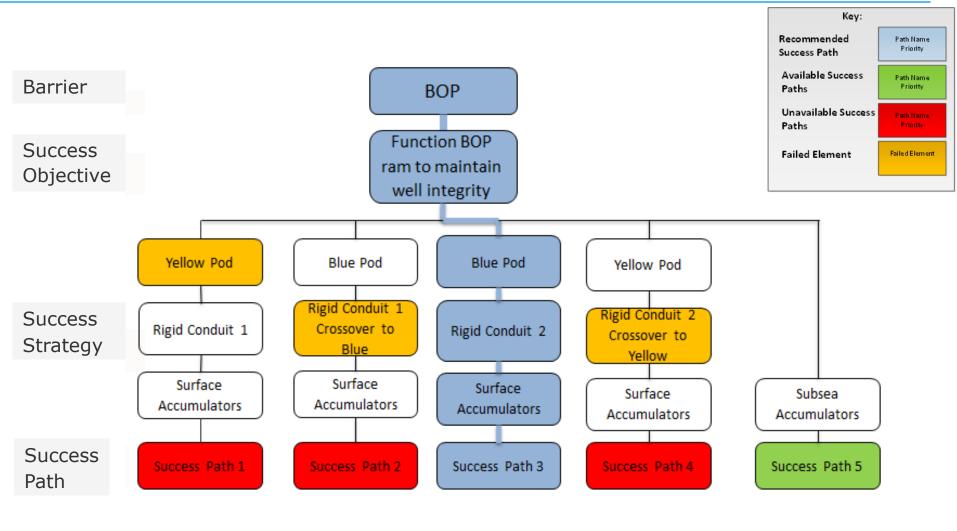
- Offshore operators need two types of information (1) condition of barriers and success paths and (2) practical decision guidance - to effectively manage risk.
 - Barrier: Physical or non-physical means to prevent the occurrence of an accident or mitigate its consequences
 - Success Path: Combination of equipment and processes (hardware, software, and human actions) necessary for the barrier to perform its intended function
- An intuitive "common language" is needed to combine information for effective decision support

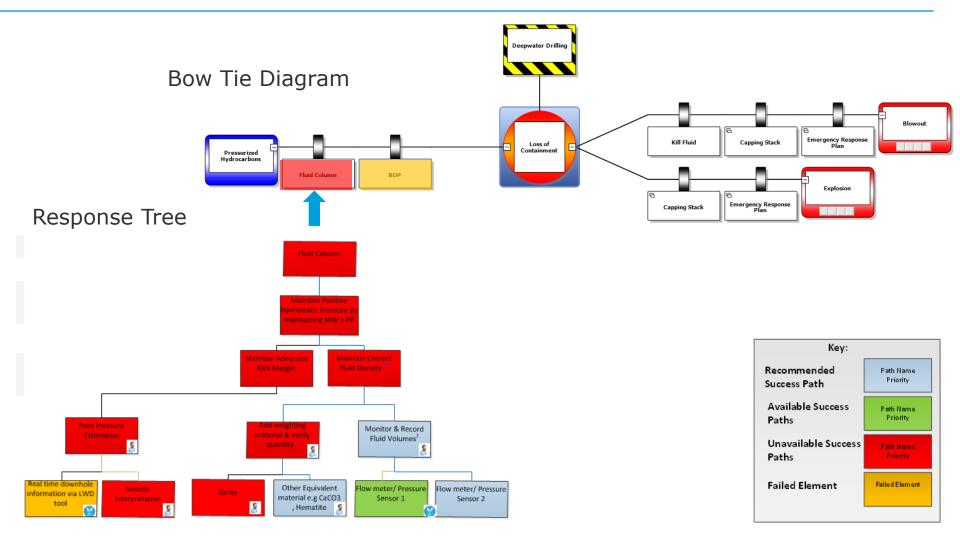
Proposed Solution - Combine barriers and success paths to:

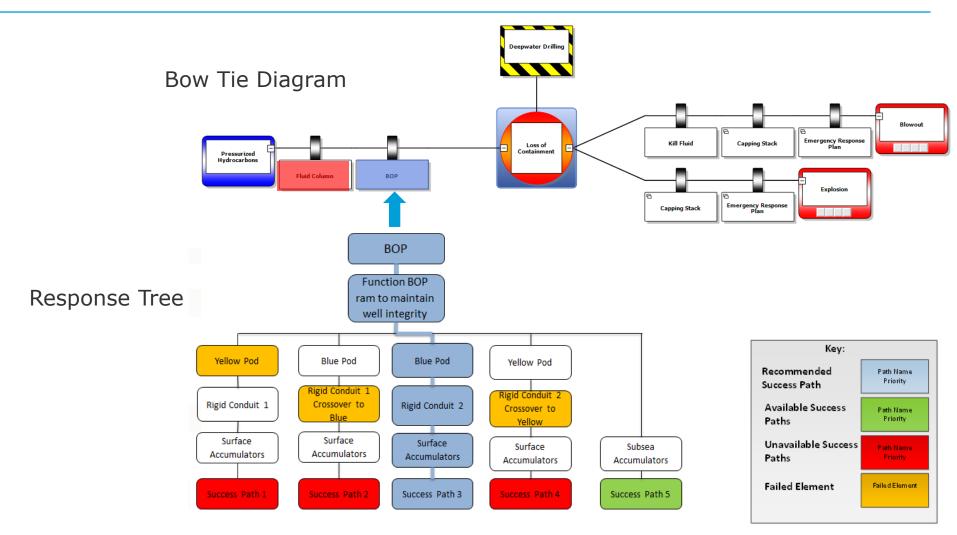

- Systematically identify information and instrumentation requirements
- Provide **decision guidance** to restore degraded barriers or implement alternate success paths
- Develop an information architecture for communication, consensus, and action among:
 - \circ Offshore operators
 - \circ Industry groups
 - Regulatory bodies
 - External stakeholders

Some key questions are...

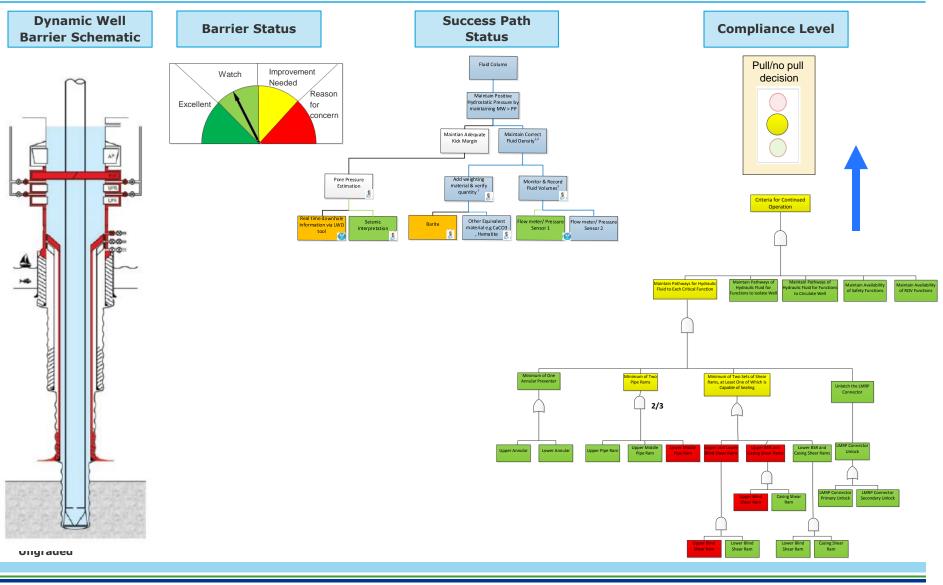

- Do you know the **current status** of your barriers and success paths?
- Are you able to continuously monitor and assess barrier and success path performance?
- Are you able manage your operational risks by providing clear guidance and decision support for restoring degraded or failed barriers?
- Are you aware of multiple success paths and actions required to restore barriers so as to continue operations?
- Do all involved parties have a common understanding and language for risk communication?


Bow tie diagrams and response trees form the foundation for decision support for dynamic barrier management


Simplified response tree for the fluid column barrier

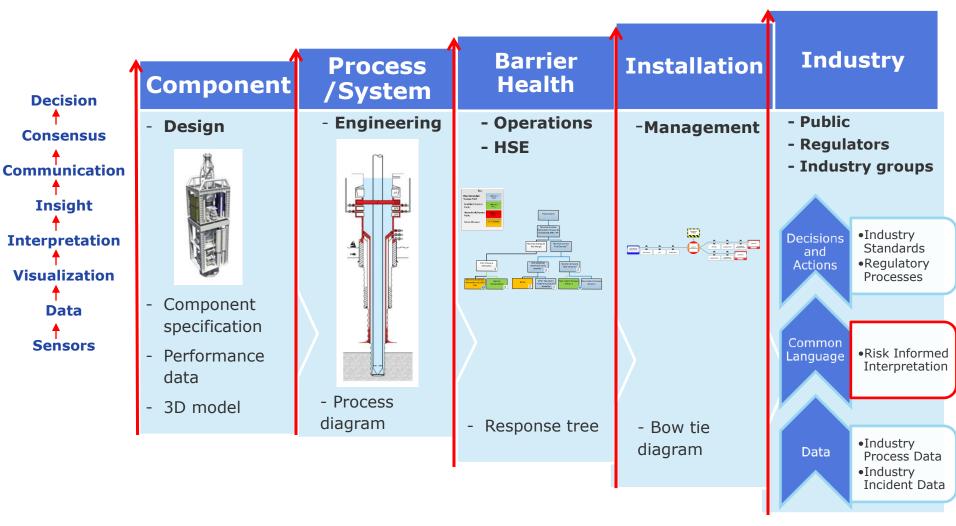

Simplified response tree for the BOP barrier

Application of dynamic barrier management: If the fluid column barrier is degraded or fails...


If the fluid column barrier is degraded or fails, then the BOP barrier is activated using an available success path

Framework for defining information needs and decision guidance for dynamic barrier management

-				
Elements of the Bow Tie Diagram and	Information		Decision Criteria	Response Guidance
Response Tree	Requirements	Source of Information	(IF)	(THEN)
Consequence : Oil Spill				
				Implement Emergency
	Occurrence of oil spill	Visual observation	Oil on surface confirmed	Response Plan
Mitigation Barrier Success Path:				
Inject kill fluid		- Volume and pressure of kill fluid		
,		source		
	Initiation criteria for kill	- Availability and position of valves in		
		flow path	Uncontrolled well flow	Inject kill fluid
Mitigation Barrier: Kill Fluid	Functionality and			
	Availability of Kill Fluid	- Availability of kill fluid source		
	Flow Paths	- Availability and position of valves in	Loss of containment has	Implement kill fluid success
		flow path	occurred	path
Top Event: Loss of Containment				
				- Function BOP ram to control
		- Mud pit levels		flow if possible
	Uncontrolled well flow	- Wellbore flow conditions	Uncontrolled well flow	- Inject kill fluid
Prevention Barrier Success Path:				
Function BOP ram to shear pipe and				
close well	Initiation criteria for			
	BOP activation to			
	shear pipe and close	- Wellbore conditions		Function BOP ram to shear
Prevention Barrier: BOP	well	- Kick margin	Underbalanced fluid column	pipe and close well
Frevention Barner: DOP		- Volume and pressure of hydraulic	Availability of hydraulic fluid	
	Availability of hydraulic		pathways does not meet	- Suspend drilling operations
	fluid pathways to	- Availability and position of valves in	operational and regulatory	- Maintain BOP control system
	function BOP rams	flow path	requirements	to restore required capability
Threat: Underbalanced fluid column				
		Comparison of fluid column processes		
	Hydrostatic pressure	Comparison of fluid column pressure to formation pressure	Inadequate kick margin	Restore kick margin
	inydrostalic pressure	io iomation pressure	inauequate Rick Indigin	NESTORE NICK HIALYIII


Visualization concepts for application of dynamic barrier management to well integrity

Decision support for dynamic barrier management addresses the entire spectrum of offshore operations

	Standby Conditions		Event Conditions			
Progression of the event \rightarrow	Continuously Monitor During	IF: Degraded Barrier Conditions	IF: Threat	IF: Top Event Conditions are	IF: Consequences Conditions are	
Elements of the bow tie diagram \downarrow	Monitor During Standby Conditions	are Present	Conditions are Present	Present	Present	
Consequence	Consequence Precursors				Consequence Assessment and Response	
Mitigation Barriers	Mitigation Barrier and Success Path Health	Restore Mitigation Barriers		Assess and Implement Mitigation Barrier Success Paths		
Top Event	Top Event Precursors			Top Event Assessment and Response		
Prevention Barriers	Prevention Barrier and Success Path Health	Restore Prevention Barriers	Assess and Implement Prevention Barrier Success Paths			
Threats	Threat Precursors		Threat Assessment and Response			

Long-range vision: Dynamic barrier management supports communication and decision making at all levels of operation and across the industry

Steps for Forming the Decision Support for Dynamic Barrier Management Joint Industry Project

- Obtain feedback from potential industry partners, BSEE, and industry groups
 - Focus on human decision making for well integrity barriers
- Identify Phase 1 sponsor organization and establish contract
- Convene launch meeting of potential JIP participants Spring 2016
- Conduct case study workshop with a "core group" of industry SMEs as a "laboratory" for developing an application and assessing the value of the approach
 - Identify success paths
 - Identify information requirements for barrier and success path health
 - Identify decision criteria and decision guidance
 - Identify visualization concepts
- Conduct case study reporting meeting to brief JIP participants on lessons learned by the workshop core group and their assessment of value of the approach
- Develop formal plans for JIP Phase 2 and beyond Ungraded

Questions?

Bill Nelson Bill.Nelson@dnvgl.com 832-766-0514

www.dnvgl.com

SAFER, SMARTER, GREENER