WellCAP® IADC ACCREDITATION PROGRAM ## MANAGED PRESSURE DRILLING OPERATIONS CORE CURRICULUM AND RELATED JOB SKILLS FORM WCT-2MPD FUNDAMENTAL LEVEL NOTE: It is suggested that the course be taught in the order presented here. The purpose of the core curriculum is to identify a body of knowledge and a set of job skills, which can be used to provide skills for Managed Pressure Drilling operations. The suggested target students for each core curriculum level are as follows: Fundamental: Rig crew up to and including the Driller, Upon completion of a Managed Pressure Drilling training course based on curriculum guidelines, the student should be able to perform the job skills in italics identified by a "■" mark (e.g., ■ Perform bottom hole pressure calculations). #### *Instructions:* - The curriculum contained in this form is designed for Fundamental level of Managed Pressure Drilling personnel. - Whenever you see the word "demonstrate" in the learning objective, consider utilizing simulation as a means of demonstrating or have the student demonstrate that objective. | Managed Pressure Drilling Operations Core Curriculum and Related Job Skills-Fundamental Level | | | |---|--|--| | | Whenever you see the word "Identify" or "Explain" in the learning objective, consider utilizing pictures and videos and actual equipment as a way for the students to achieve the objective. | ## i. Table of Contents | l. | MANAGED PRESSURE DRILLING OVERVIEW | 5 | |------|--|---| | | A. Definitions of conventional, underbalanced drilling and managed pressure drilling | 5 | | | B. Drivers | 5 | | | C. IADC classifications | 5 | | II. | SIMILARITIES AND CONTRASTS BETWEEN CONVENTIONAL DRILLING AND MANAGED PRESSURE | | | DR | ILLING | 6 | | | A. Similarities | 6 | | | 1. BOP stack | | | | 2. Control of well at all times | | | | 3. Health, Safety & Environmental Issues | 6 | | | 4. Overbalanced at all times | | | | 5. Barrier verification | | | | 6. Secondary Barrier is the same | | | | B. Differences | | | | 1. Primary barrier changed | 6 | | | 2. Additional equipment, personnel and procedures | | | III. | VARIANTS OF MANAGED PRESSURE DRILLING | | | | A. Examples of MPD Variations | 7 | | IV. | PRESSURE RELATIONSHIPS FOR MANAGED PRESSURE DRILLING TECHNIQUES | 8 | | | A. Dynamic (equivalent circulating density) vs. static in MPD | | | | B. Choke Control and Surface Pressure | 8 | | | C. Bottom hole Pressure | | | | D. Pressure Window | 8 | | ٧. | MANAGED PRESSURE DRILLING EQUIPMENT AND RIG UP | 9 | | | A. Rotating Control Device (RCD) | Ç | | | B. Rig Interfaces | | | | C. Separation equipment | | | | D. Choke manifold | 9 | | | E. Returns Flow Meter | 9 | | | F. Automation and Computer Control | Ç | ## Managed Pressure Drilling Operations Core Curriculum and Related Job Skills-Fundamental Level | G | i. Drillstring floats | 9 | |-------|--|------| | | Continuous Circulation Equipment | | | I. | Pressure Sensors, Gauges, and data acquisition | | | J | Auxiliary Pump | | | K | . Gas Injection Equipment | | | VI. | BOTTOMHOLE PRESSURE CONTROL | .11 | | Α | . MPD Operational Matrix | . 11 | | В | . Anchor Point (Point of Constant Pressure) | | | С | . Influxes | . 11 | | D | Losses | . 11 | | VII. | MANAGED PRESSURE DRILLING PROCEDURES | .12 | | | . Tripping in hole | | | | Tripping out of hole | | | | Making a connection | | | D | ~ | | | Е | _ _ _ | | | F | . Casing/Liner Running and Cementing | | | G | 6. Commissioning and Fingerprinting | . 12 | | Н | Contingency Procedures | . 12 | | VIII. | HEALTH, SAFETY AND ENVIRONMENT AND REGULATION | .13 | | Α | . Trapped pressure issues | . 13 | | В | . Corrosion and erosion | . 13 | | С | Pressure Testing | | | D | . HAZID/HAZOP/MOC | . 13 | | Ε | . Bridging Documents | | | F | . Communication | . 13 | | G | Company Compan | . 13 | #### I. MANAGED PRESSURE DRILLING OVERVIEW | TRAINING TOPICS | LEARNING OBJECTIVE | KEY POINTS/COMMENTS | |--|--|--| | A. Definitions of conventional, underbalanced drilling and managed pressure drilling | Define conventional drilling,
Underbalanced Drilling and Managed
Pressure Drilling | Emphasize the difference in Managed Pressure Drilling compared to Underbalanced Drilling and Conventional Drilling | | B. Drivers | Describe key drivers for using MPD | | | C. IADC classifications | Show IADC classifications and significance | Use the IADC Classification System | #### II. SIMILARITIES AND CONTRASTS BETWEEN CONVENTIONAL DRILLING AND MANAGED PRESSURE DRILLING | TRAINING TOPICS | LEARNING OBJECTIVE | KEY POINTS/COMMENTS | |---|---|---------------------| | A. Similarities 1. BOP stack 2. Control of well at all times 3. Health, Safety & Environmental Issues 4. Overbalanced at all times 5. Barrier verification 6. Secondary Barrier is the same | Identify similarities between
conventional drilling and Managed
Pressure Drilling | | | B. Differences1. Primary barrier changed2. Additional equipment, personnel and procedures | Identify differences between
conventional drilling and Managed
Pressure Drilling | | #### III. VARIANTS OF MANAGED PRESSURE DRILLING | TRAINING TOPICS | LEARNING OBJECTIVE | KEY POINTS/COMMENTS | |-------------------------------|--|--| | A. Examples of MPD Variations | Explain what conditions influence the
type of Managed Pressure Drilling
technique selected for a specific well | Possible examples: CBHP, Low Head, MCD, DG, Continuous Flow, Multi-Phase, etc. | #### IV. PRESSURE RELATIONSHIPS FOR MANAGED PRESSURE DRILLING TECHNIQUES | TRAINING TOPICS | LEARNING OBJECTIVE | KEY POINTS/COMMENTS | |---|--|---| | A. Dynamic (equivalent circulating density) vs. static in MPD | Explain ESD, ECD Dynamic vs. Static conditions Compare the effect of circulation for conventional and Managed Pressure Drilling | MW may be underbalanced or overbalanced, but the well is never underbalanced. | | B. Choke Control and Surface Pressure | Explain the effects on bottom hole pressure from surface pressure | If we lose choke pressure we may become underbalanced | | C. Bottom hole Pressure | Explain the components of bottom
hole pressure and their relationship | Hydrostatic Head, Friction, Backpressure; P = HH + Friction+ Surface Pressure | | D. Pressure Window | Describe the limits of the operating
pressure window. | Include discussion of margins | ### V. MANAGED PRESSURE DRILLING EQUIPMENT AND RIG UP | TRAINING TOPICS | LEARNING OBJECTIVE | KEY POINTS/COMMENTS | |------------------------------------|---|--| | A. Rotating Control Device (RCD) | Explain the purpose of a RCD and main components, and placement Explain differences between static and dynamic pressure rating Identify factors affecting seal life | Include application with subsea stack | | B. Rig Interfaces | Identify the pipework, flow path, electricity, cabling, air requirements Describe the placement of all equipment associated with the MPD operation | Use simplified or example PID, Flowpath schematics, etc. | | C. Separation equipment | Identify main components of a separator Flare line U-tube/Mud Seal/level control Identify the criteria for using a separator | When using multi-phase fluid and when using single phase fluid | | D. Choke manifold | Describe use of a choke manifold Identify the components of the choke manifold | | | E. Returns Flow Meter | Describe the purpose and limitations
of a returns flow meter | | | F. Automation and Computer Control | Explain where automation and computers are used in MPD | Discuss use of hydraulic model to provide set points | | G. Drillstring floats | Identify different types and placement
of drillstring floats Explain importance of using drillstring | | ## Managed Pressure Drilling Operations Core Curriculum and Related Job Skills-Fundamental Level | | floats | | |---|--|---| | H. Continuous Circulation Equipment | Identify equipment used for
continuous circulation systems | | | I. Pressure Sensors, Gauges, and data acquisition | Identify pressure sensors and gauges
used in managed pressure drilling | | | J. Auxiliary Pump | Explain the purpose of using an
auxiliary pump | Include mention of riser boost line for offshore applications | | K. Gas Injection Equipment | Identify equipment and lines used in gas injection | Pressure bleed off process | | | Identify gas injection points | | | | Explain differences between gas and liquid injection | | #### VI. BOTTOMHOLE PRESSURE CONTROL | TRAINING TOPICS | LEARNING OBJECTIVE | KEY POINTS/COMMENTS | |--|---|---------------------| | A. MPD Operational Matrix | Identify the operations matrix Identify limits of the matrix Identify transition point between MPD and Well Control | | | B. Anchor Point (Point of Constant Pressure) | Identify potential points where pressure
may be held constant | | | C. Influxes | Explain how MPD detects influxes
compared to conventional methods | | | D. Losses | Explain how MPD detects losses
compared to conventional methods | | #### VII. MANAGED PRESSURE DRILLING PROCEDURES | TRAINING TOPICS | LEARNING OBJECTIVE | KEY POINTS/COMMENTS | |---------------------------------------|---|---| | A. Tripping in hole | Explain general procedures & practices | Include mud roll over | | B. Tripping out of hole | Explain general procedures & practices | | | C. Making a connection | Explain general procedures & practices | | | D. Drilling | Explain how MPD drilling may be different than conventional | | | E. RCD Element Replacement | Explain general procedure for
replacing RCD element | Include HSE issues | | F. Casing/Liner Running and Cementing | Explain why running casing or liner is
different compared to conventional | Surge and swab mitigation | | G. Commissioning and Fingerprinting | Explain why fingerprinting, pore-
pressure verification tests, and
formation Integrity tests are used | Include discussion of general steps for these procedures | | H. Contingency Procedures | Explain why contingency procedures are necessaryIdentify main contingency procedures | Examples may include plugged choke,
loss or power, RCD seal leak, etc. | ### VIII. HEALTH, SAFETY AND ENVIRONMENT AND REGULATION | TRAINING TOPICS | LEARNING OBJECTIVE | KEY POINTS/COMMENTS | |----------------------------|--|---| | A. Trapped pressure issues | Explain need for opening and closing sequences/procedure Identify pressurized equipment (lines, etc) | | | B. Corrosion and erosion | Identify when corrosion and erosion
may be increased in MPD | Note sources: drilling fluids, | | C. Pressure Testing | Explain importance of Pressure
Testing MPD equipment | 92M Requirements | | D. HAZID/HAZOP/MOC | Explain why a HazOP is necessary Explain what a HazID is for Explain why it is important to manage any changes to equipment and procedures | | | E. Bridging Documents | Explain the use of bridging documents | Integration of different policies and changes brought about by implementation of MPD | | F. Communication | Describe the importance of good
communication between all involved
personnel | Emphasize following established protocols or any operation Discuss language barriers and continuity of signals Define roles and concept of chain of command | | G. QHSE Planning | Describe the importance of Quality,
Health, Safety and Environment
Planning | General HSE awareness
Evacuation Plan, etc. | | _ | = - | | | |---|-----|--|--| Managed Pressure Drilling Operations Core Curriculum and Related Job Skills-Fundamental Level